Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the HospiMedica website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
RANDOX LABORATORIES

Deascargar La Aplicación Móvil




IA predice demanda de camas de hospital para pacientes que entran por el departamento de emergencias

Por el equipo editorial de HospiMedica en español
Actualizado el 12 Sep 2022
Print article
Imagen: Herramienta de IA estima cuántas camas de hospital se necesitarán para los pacientes que vienen a través del DE (Fotografía cortesía de UCL)
Imagen: Herramienta de IA estima cuántas camas de hospital se necesitarán para los pacientes que vienen a través del DE (Fotografía cortesía de UCL)

Se está utilizando una herramienta de inteligencia artificial (IA) para predecir cuántos pacientes, que pasan por el departamento de emergencias, deberán ser admitidos en el hospital, lo que ayuda a los planificadores a administrar la demanda de camas.

La herramienta, desarrollada por investigadores del Colegio Universitario de Londres (UCL, Londres, Reino Unido), estima cuántas camas de hospital se necesitarán en cuatro y ocho horas al observar los datos en vivo de los pacientes que han llegado al departamento de emergencias del hospital. En su estudio, el equipo de investigación demostró que la herramienta era más precisa que el punto de referencia convencional utilizado por los planificadores, basado en el número promedio de camas necesarias el mismo día de la semana durante las seis semanas anteriores. La herramienta, que también da cuenta de los pacientes que aún no han llegado al hospital, también proporciona información mucho más detallada que el método convencional. En lugar de una predicción de una sola cifra para el día en general, la herramienta incluye una distribución de probabilidad de cuántas camas se necesitarán en cuatro y ocho horas y proporciona sus pronósticos cuatro veces al día, enviados por correo electrónico a los planificadores de hospitales. El equipo de investigación ahora está refinando los modelos para que puedan estimar cuántas camas se necesitarán en diferentes áreas del hospital (por ejemplo, camas en salas médicas o salas quirúrgicas).

Para desarrollar la herramienta de IA, los investigadores entrenaron 12 modelos de aprendizaje automático utilizando datos de pacientes registrados en UCLH entre mayo de 2019 y julio de 2021. Estos modelos evaluaron la probabilidad de que cada paciente sea admitido en el hospital desde el departamento de emergencias según datos que van desde la edad y cómo llegó el paciente al hospital, hasta los resultados de las pruebas y el número de consultas, y combinó estas probabilidades para obtener una estimación general del número de camas necesarias. Al comparar las predicciones de los modelos con las admisiones reales entre mayo de 2019 y marzo de 2020, el equipo descubrió que los modelos superaron al método convencional, con predicciones centrales con un promedio de cuatro admisiones fuera de la cifra real en comparación con el método convencional, que fue en promedio 6,5 admisiones por fuera. Después del golpe de COVID-19, los investigadores pudieron adaptar los modelos para tener en cuenta variaciones significativas tanto en la cantidad de personas que llegaban como en la cantidad de tiempo que pasaban en el departamento de emergencias.

“Nuestros modelos de IA brindan una imagen mucho más completa sobre la probable demanda de camas a lo largo del día”, dijo el Dr. Zella King (Unidad de Investigación Operacional Clínica de UCL y el Instituto de Informática de la Salud de UCL). “Hacen uso de los datos del paciente en el instante en que se registran estos datos. Esperamos que esto pueda ayudar a los planificadores a administrar el flujo de pacientes, una tarea compleja que implica equilibrar los pacientes planificados con las admisiones de emergencia. Esto es importante para reducir la cantidad de cirugías canceladas y garantizar una atención de alta calidad”.

“Esta herramienta de IA será enormemente valiosa para ayudarnos a administrar las admisiones y el flujo de pacientes en UCLH”, agregó Alison Clements, jefa de operaciones, flujo de pacientes y preparación para emergencias, resiliencia y respuesta en UCLH. “Nuestro próximo paso es comenzar a usar las predicciones en reuniones de flujo diario. Esperamos continuar trabajando con UCL para refinar la herramienta y expandir su poder predictivo en todo el hospital”.

Enlaces relacionados:
Colegio Universitario de Londres  

Miembro Oro
VISOR EN PANTALLA DE DIAGNÓSTICO EN TIEMPO REAL
GEMweb Live
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
Anesthesia System
WATO EX-65
New
Table-Top Reader
FCR PRIMA T2

Print article
Radcal

Canales

Técnicas Quirúrgicas

ver canal
Imagen: Ilustración de cómo las láminas de grafeno se alinean sobre una superficie y pueden matar bacterias sin dañar las células humanas sanas (foto cortesía de Yen Sandqvist)

Material de recubrimiento de grafeno ultrafino abre el camino a dispositivos médicos bactericidas

Las infecciones asociadas a la atención sanitaria son un problema global significativo, que conduce a un gran sufrimiento, incremento en los costos de atención médica y un mayor riesgo... Más

Cuidados de Pacientes

ver canal
Imagen: La tecnología portátil de BeamClean inactiva los patógenos en superficies comúnmente tocadas en segundos (foto cortesía de Freestyle Partners))

Tecnología portátil de luz germicida, única en su tipo, desinfecta superficies clínicas de alto contacto en segundos

La reducción de las infecciones adquiridas en la atención sanitaria (IAAS) sigue siendo una cuestión apremiante dentro de los sistemas sanitarios mundiales. Sólo en Estados Unidos, 1,7 millones de pacientes... Más

TI

ver canal
Imagen: El primer modelo específico de la institución proporciona una ventaja de desempeñoa significativa sobre los modelos actuales basados en la población (Fotografía cortesía de Mount Sinai)

Modelo de aprendizaje automático mejora predicción del riesgo de mortalidad para pacientes de cirugía cardíaca

Se han implementado algoritmos de aprendizaje automático para crear modelos predictivos en varios campos médicos, y algunos han demostrado mejores resultados en comparación con sus... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.