Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the HospiMedica website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Detecto

Deascargar La Aplicación Móvil




Eventos

ATENCIÓN: Debido a la EPIDEMIA DE CORONAVIRUS, ciertos eventos están siendo reprogramados para una fecha posterior o cancelados por completo. Verifique con el organizador del evento o el sitio web antes de planificar cualquier evento próximo.
09 dic 2022 - 11 dic 2022

Módulo de IA permite la segmentación y procesamiento predictivos de imágenes

Por el equipo editorial de HospiMedica en español
Actualizado el 30 Dec 2019
Print article
Imagen: Un conjunto de aplicaciones de microscopía ayuda a la imagenología predictiva, la segmentación y el procesamiento (Fotografía cortesía de Nikon Instruments)
Imagen: Un conjunto de aplicaciones de microscopía ayuda a la imagenología predictiva, la segmentación y el procesamiento (Fotografía cortesía de Nikon Instruments)
Un módulo potente de análisis y procesamiento de imágenes aprovecha el aprendizaje profundo y la inteligencia artificial (IA) para extraer con exactitud datos imparciales de grandes cantidades de conjuntos de datos de microscopía.

El módulo de análisis y procesamiento de imágenes de microscopía NIS.ai de Nikon Instruments (Melville, NY, EUA) es un conjunto de herramientas de procesamiento basadas en inteligencia artificial que utiliza redes neuronales convolucionales (CNN) para aprender a leer imágenes de pequeños conjuntos de datos de capacitación proporcionados por el usuario. Los resultados de la capacitación se pueden aplicar para procesar y analizar grandes volúmenes de datos, lo que permite a los investigadores aumentar el rendimiento y ampliar sus límites de aplicación. El NIS.ai incluye un conjunto de aplicaciones para imagenología predictiva, segmentación y procesamiento de imágenes. Éstas incluyen:

Convert.ai, que aprende patrones relacionados en dos canales de imagenología diferentes. Después del entrenamiento, Convert.ai puede predecir el patrón en el segundo canal, incluso cuando se presenta solo con el primer canal. También se puede entrenar para predecir dónde la coloración fluorescente de núcleos basada en DAPI, un método común para la segmentación y el recuento de células, se podría basar en imágenes de microscopía de contraste de interferencia diferencial (DIC) o de contraste de fase no coloreadas. Esto permite a los usuarios realizar análisis de imágenes basadas en núcleos sin tener que colorear las muestras con DAPI o adquirir un canal fluorescente.

Segment.ai, que permite identificar y segmentar fácilmente estructuras complejas. Las neuritas en las imágenes de contraste de fase son tradicionalmente difíciles de definir mediante el umbral clásico. Segment.ai se puede entrenar en un pequeño subconjunto de neuritas trazadas a mano para detectar y segmentar automáticamente neuritas de miles de conjuntos de datos no rastreados.

Enhance.ai, que permite mejorar las muestras fluorescentes tenues con una baja relación señal/ruido (SNR) al aprender cómo se ve una imagen de alta señal a ruido, a través de un proceso que compara imágenes subexpuestas y óptimamente expuestas. Enhance.ai puede restaurar detalles en imágenes fluorescentes tenues o poco expuestas, lo que permite a los investigadores obtener más información de sus aplicaciones de imágenes de baja señal.

Denoise.ai, que elimina el ruido de disparo de las imágenes confocales resonantes y se puede realizar en tiempo real. La aplicación de Denoise.ai a las imágenes confocales resonantes permite a los usuarios adquirir imágenes confocales a una velocidad ultra alta sin sacrificar la calidad de las imágenes.

“La aplicación de Aprendizaje Profundo e IA a la imagenología biomédica es extremadamente poderosa y abre posibilidades invisibles”, dijo Steve Ross, PhD, director de productos y marketing de Nikon Instruments. “Con NIS.ai, los investigadores pueden aplicar fácilmente el aprendizaje profundo para extraer datos significativos e imparciales de conjuntos de datos grandes y complejos”.

Enlace relacionado:
Nikon Instruments

ANALIZADOR DE SANGRE COMPLETA PMB
GEM Premier ChemSTAT
Proveedor de platino
Hormonal Test
Endocrine Array
New
Automated Clinical Chemistry Analyzer
DRI-CHEM NX600
New
Fecal Occult Blood Test
iFOB Assay

Print article
Radcal

Canales

Cuidados Criticos

ver canal
Imagen: Analizador de hemostasia Quantra  (Fotografía cortesía de la HemoSonics)

Sistema de hemostasia de sangre total POC de última generación reconoce necesidades específicas de servicios de emergencia y quirófanos

Las pruebas hemostáticas actuales proporcionan solo un subconjunto de la información necesaria, o tardan demasiado en ser útiles en situaciones críticas de hemorragia, lo que... Más

Téc. Quirúrgica

ver canal
Imagen: Un material nuevo único ha mostrado ser significativamente prometedor en el tratamiento de la lesión de la médula espinal (Fotografía cortesía de Unsplash)

Estructuras de soporte biocompatibles hechas de materiales híbridos únicos pueden reparar el tejido de la médula espinal

La lesión de la médula espinal sigue siendo una de las lesiones traumáticas más debilitantes que una persona puede sufrir durante su vida y afecta todos los aspectos de la vida... Más

Cuidados de Pacientes

ver canal
Imagen: El sistema de limpieza automatizado permite que los endoscopios se limpien directamente de la clínica (Fotografía cortesía de la Universidad de Aston)

Primer limpiador de endoscopios automatizado del mundo combate la resistencia a antimicrobianos

Los endoscopios son tubos largos y delgados con una luz y una cámara en un extremo. Debido a la sensibilidad de los materiales y la electrónica, no se pueden esterilizar en un autoclave (una... Más

TI

ver canal
Imagen: El uso de datos digitales puede mejorar los resultados de salud (Fotografía cortesía de Unsplash)

Según un estudio, registros médicos electrónicos pueden ser clave para mejorar la atención al paciente

Cuando se transfiere a un paciente de un hospital a un especialista o centro de rehabilitación cercano, a menudo es difícil para el personal del nuevo centro acceder a los registros médicos... Más

Negocios

ver canal
Imagen: Se espera que el mercado global de sistemas de monitoreo multiparamétrico de pacientes supere los 15 mil millones de dólares para 2028 (Fotografía cortesía de Unsplash)

Mercado mundial de sistemas de monitorización multiparamétrica de pacientes impulsado por aumento de enfermedades crónicas

El equipo de monitorización multiparamétrica de pacientes  se utiliza para evaluar los signos vitales de los pacientes que padecen una enfermedad grave. Estos dispositivos están... Más
Copyright © 2000-2022 Globetech Media. All rights reserved.