Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the HospiMedica website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Detecto

Deascargar La Aplicación Móvil




Eventos

ATENCIÓN: Debido a la EPIDEMIA DE CORONAVIRUS, ciertos eventos están siendo reprogramados para una fecha posterior o cancelados por completo. Verifique con el organizador del evento o el sitio web antes de planificar cualquier evento próximo.
09 dic 2022 - 11 dic 2022

Modelo de RM con IA clasifica los tumores intracraneales comunes

Por el equipo editorial de HospiMedica en español
Actualizado el 15 Sep 2021
Print article
Imagen: Los colores de los mapas de color de GradCAM muestran la predicción de tumores (Fotografía cortesía de WUSTL)
Imagen: Los colores de los mapas de color de GradCAM muestran la predicción de tumores (Fotografía cortesía de WUSTL)
Un estudio nuevo afirma que un modelo 3D de inteligencia artificial (IA) es capaz de clasificar un tumor cerebral como uno de los seis tipos comunes a partir de un solo examen de resonancia magnética (RM).

Para desarrollar el algoritmo GradCAM, investigadores de la Universidad de Washington (WUSTL; St. Louis, MO, EUA), utilizaron 2.105 exámenes de resonancia magnética ponderadas en T1 de cuatro conjuntos de datos disponibles públicamente, divididos en capacitación (1.396), interna (361) y conjuntos de datos externos (348). Se entrenó una red neuronal convolucional (CNN) para discriminar entre exámenes sanos y aquellos con tumores, clasificados por tipo (glioma de alto grado, glioma de bajo grado, metástasis cerebrales, meningioma, adenoma hipofisario y neuroma acústico). A continuación, se evaluó el desempeño del modelo y se trazaron mapas de características para visualizar la atención de la red.

Los resultados de las pruebas internas mostraron que GradCAM logró una exactitud del 93,35% en siete clases de imágenes (una clase saludable y seis clases de tumores). Las sensibilidades variaron del 91% al 100% y el valor predictivo positivo (VPP) varió del 85% al 100%. El valor predictivo negativo (VPN) osciló entre el 98% y el 100% en todas las clases. La atención de la red se superpuso con las áreas tumorales para todos los tipos de tumores. Para el conjunto de datos de la prueba externa, que incluyó solo dos tipos de tumores (glioma de alto grado y glioma de bajo grado), GradCAM tuvo una exactitud del 91,95%. El estudio fue publicado el 11 de agosto de 2021 en la revista Radiology: Artificial Intelligence.

“Estos resultados sugieren que el aprendizaje profundo es un método prometedor para la clasificación y evaluación automatizadas de tumores cerebrales. El modelo logró una alta exactitud en un conjunto de datos heterogéneo y mostró excelentes capacidades de generalización en datos de prueba invisibles”, dijo el autor principal, Satrajit Chakrabarty, MSc, del departamento de ingeniería eléctrica y de sistemas. “Esta red es el primer paso hacia el desarrollo de un flujo de trabajo de radiología aumentado con inteligencia artificial que puede respaldar la interpretación de imágenes al proporcionar información cuantitativa y estadísticas”.

El aprendizaje profundo es parte de una familia más amplia de métodos de aprendizaje automático de IA basados en representaciones de datos de aprendizaje, a diferencia de los algoritmos específicos de tareas. Se trata de algoritmos de CNN que utilizan una cascada de muchas capas de unidades de procesamiento no lineales para la extracción, conversión y transformación de características, y cada capa sucesiva utiliza la salida de la capa anterior como entrada para formar una representación jerárquica.

Enlace relacionado:
Universidad de Washington

ANALIZADOR DE SANGRE COMPLETA PMB
GEM Premier ChemSTAT
Proveedor de oro
Infectious Diseases Controls
Multichem ID-SeroNeg
New
Fecal Occult Blood Test
iFOB Assay
New
Hepatitis/HBcAb CLIA Test
DIA.CHEMILUX HBcAb

Print article
Radcal

Canales

Cuidados Criticos

ver canal
Imagen: Analizador de hemostasia Quantra  (Fotografía cortesía de la HemoSonics)

Sistema de hemostasia de sangre total POC de última generación reconoce necesidades específicas de servicios de emergencia y quirófanos

Las pruebas hemostáticas actuales proporcionan solo un subconjunto de la información necesaria, o tardan demasiado en ser útiles en situaciones críticas de hemorragia, lo que... Más

Téc. Quirúrgica

ver canal
Imagen: Un material nuevo único ha mostrado ser significativamente prometedor en el tratamiento de la lesión de la médula espinal (Fotografía cortesía de Unsplash)

Estructuras de soporte biocompatibles hechas de materiales híbridos únicos pueden reparar el tejido de la médula espinal

La lesión de la médula espinal sigue siendo una de las lesiones traumáticas más debilitantes que una persona puede sufrir durante su vida y afecta todos los aspectos de la vida... Más

Cuidados de Pacientes

ver canal
Imagen: El sistema de limpieza automatizado permite que los endoscopios se limpien directamente de la clínica (Fotografía cortesía de la Universidad de Aston)

Primer limpiador de endoscopios automatizado del mundo combate la resistencia a antimicrobianos

Los endoscopios son tubos largos y delgados con una luz y una cámara en un extremo. Debido a la sensibilidad de los materiales y la electrónica, no se pueden esterilizar en un autoclave (una... Más

TI

ver canal
Imagen: El uso de datos digitales puede mejorar los resultados de salud (Fotografía cortesía de Unsplash)

Según un estudio, registros médicos electrónicos pueden ser clave para mejorar la atención al paciente

Cuando se transfiere a un paciente de un hospital a un especialista o centro de rehabilitación cercano, a menudo es difícil para el personal del nuevo centro acceder a los registros médicos... Más

Negocios

ver canal
Imagen: Se espera que el mercado global de sistemas de monitoreo multiparamétrico de pacientes supere los 15 mil millones de dólares para 2028 (Fotografía cortesía de Unsplash)

Mercado mundial de sistemas de monitorización multiparamétrica de pacientes impulsado por aumento de enfermedades crónicas

El equipo de monitorización multiparamétrica de pacientes  se utiliza para evaluar los signos vitales de los pacientes que padecen una enfermedad grave. Estos dispositivos están... Más
Copyright © 2000-2022 Globetech Media. All rights reserved.