Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.
Please note that the HospiMedica website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Control-X Medical

Download Mobile App




La IA pone en riesgo la información confidencial de la salud

Por el equipo editorial de HospiMedica en español
Actualizado el 23 Jan 2019
Print article
Imagen: La IA puede reconstruir datos anónimos para identificar personas (Fotografía cortesía de Getty Images).
Imagen: La IA puede reconstruir datos anónimos para identificar personas (Fotografía cortesía de Getty Images).
Los avances en las tecnologías de inteligencia artificial (IA), como las incorporadas en los rastreadores de actividad, teléfonos inteligentes y relojes inteligentes, pueden amenazar la privacidad de los datos de salud personales.

Investigadores del Instituto de Tecnología de Massachusetts (MIT, Cambridge, MA, EUA), la Universidad de California Berkeley (UCB; EUA) y otras instituciones, realizaron un estudio transversal de los conjuntos de datos de la Encuesta Nacional de Examen de Salud y Nutrición de los EUA (NHANES, por sus siglas en inglés) para evaluar la posibilidad de volver a identificar los datos de actividad física, medidos en el acelerómetro, a los que se les eliminó información de salud geográfica y protegida, utilizando máquinas de vectores de soporte (SVM) y métodos de aprendizaje automático de bosque aleatorio.

Los datos medidos en el acelerómetro se recolectaron durante siete días continuos, con el resultado primario siendo la capacidad de los algoritmos de SVM lineal y de bosque aleatorio para hacer coincidir los datos demográficos y de la actividad física agregada con los números de registros específicos individuales, y el porcentaje de coincidencias correctas realizadas por cada algoritmo. Los resultados mostraron que el algoritmo de bosque aleatorio reidentificó exitosamente los datos demográficos y de actividad física agregada de un promedio de 94% de los adultos y de 86% de los niños. El algoritmo SVM lineal reidentificó con éxito los datos demográficos y de actividad física del 85% de los adultos y el 68% de los niños. El estudio fue publicado el 21 de diciembre de 2018 en la revista JAMA Network Open.

“Los resultados señalan un gran problema; si eliminas toda la información de identificación, no te protege tanto como piensas. Alguien más puede regresar y volver a colocarla si tiene el tipo de información correcta”, dijeron el autor principal, Anil Aswani, PhD, de la UCB, y sus colegas. “Se podría imaginar a Facebook reuniendo los datos de los pasos de la aplicación en su teléfono inteligente, luego comprando datos de atención médica de otra compañía y comparándolos con los dos. Podrían comenzar a vender publicidad basada en eso o podrían vender los datos a otros”.

“Los empleadores, los prestamistas hipotecarios, las compañías de tarjetas de crédito y otros podrían usar la IA para discriminar por estado de embarazo o discapacidad, por ejemplo. Lo que me gustaría ver de esto son las nuevas regulaciones o reglas que protegen los datos de salud; pero en realidad hay un gran impulso para incluso debilitar las regulaciones en este momento”, concluyó el Dr. Aswani. “El riesgo es que si las personas no son conscientes de lo que sucede, las reglas que tenemos se debilitarán. Y el hecho es que los riesgos de que perdamos el control de nuestra privacidad cuando se trata de atención médica en realidad aumentan y no disminuyen”.

Los bosques aleatorios son un método de aprendizaje conjunto que combina una gran cantidad de árboles de decisión para hacer predicciones. Aunque los modelos de bosques aleatorios son difíciles de interpretar, este enfoque es una de las técnicas de aprendizaje automático más exitosas porque a menudo tiene la mayor precisión. Linear SVM es un algoritmo de clasificación popular que tiene una velocidad de computación rápida, es fácil de interpretar y tiene buena exactitud.


Enlace relacionado:
Instituto de Tecnología de Massachusetts
Universidad de California Berkeley



Print article
Centurion Service
CIRS

Canales

Téc. Quirúrgica

ver canal
Imagen: La plataforma quirúrgica ultrasónica integrada Nexus (Fotografía cortesía de Misonix).

Plataforma quirúrgica de ultrasonido integra las terapias mínimamente invasivas

Una plataforma quirúrgica ultrasónica nueva combina herramientas de corte, desbridamiento y aspiración en un sistema unificado. El sistema Nexus de Misonix (Armingdale, NY, EUA) es una plataforma quirúrgica... Más

Bio Investigación

ver canal

Diseñan programa que proporciona soluciones integradas para investigación bioinformática

Dedicated Computing (Waukesha, WI, EUA), una compañía global de tecnología, informó que estará participando en el programa Intel Cluster Ready para ofrecer soluciones integradas de clústeres de computación de alto rendimiento para el mercado de ciencias de la vida.... Más

Negocios

ver canal
Imagen: Las investigaciones muestran que los pacientes de edad avanzada que no pueden acudir a los hospitales impulsan la demanda de dispositivos y servicios de monitorización multiparamétrica de pacientes (Fotografía cortesía de Boston Scientific).

Mercado de monitorización multiparamétrica es determinado por los pacientes que reciben atención en casa

Se proyecta que el mercado global de monitorización multiparamétrica de pacientes registre una TCAC del 5% entre 2019-2024, impulsado principalmente por el crecimiento rápido de la población que envejece... Más
Copyright © 2000-2019 Globetech Media. All rights reserved.