Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the HospiMedica website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros

Deascargar La Aplicación Móvil




Radiómica por TC ayuda a clasificar los nódulos pulmonares pequeños

Por el equipo editorial de HospiMedica en español
Actualizado el 03 Feb 2021
Print article
Imagen: La radiómica por TC puede ayudar a clasificar la malignidad de los nódulos pulmonares (Fotografía cortesía de Getty Images)
Imagen: La radiómica por TC puede ayudar a clasificar la malignidad de los nódulos pulmonares (Fotografía cortesía de Getty Images)
Un algoritmo de aprendizaje automático (AA) puede ser muy exacto para clasificar los nódulos pulmonares muy pequeños que se encuentran en los programas de detección pulmonar por TC de dosis baja, según un estudio nuevo.

Investigadores del Centro de Investigación de Cáncer de la Columbia Británica (BCCRC; Vancouver, Canadá), entrenaron un algoritmo de AA de análisis discriminante lineal (LDA), utilizando datos del estudio Pancanadiense de Detección Temprana del Cáncer de Pulmón (PanCan) para caracterizar, analizar y clasificar nódulos pulmonares pequeños como malignos o benignos extrayendo aproximadamente 170 características radiómicas de textura y forma, siguiendo la segmentación de nódulos semiautomatizada en las imágenes. Luego compararon el desempeño del algoritmo con el de la calculadora de puntuación de riesgo de malignidad de próstata, pulmón, colorrectal y ovario (PLCO) m2012, en otro conjunto de datos.

La cohorte de estudio consistió en 139 nódulos malignos y 472 nódulos benignos que tenían aproximadamente el mismo tamaño. Los investigadores aplicaron restricciones de tamaño (basadas en los criterios de clasificación de Lung-RADS) para eliminar cualquier nódulo del conjunto de datos que ya se consideraría sospechoso, lo que incluiría cualquier nódulo con componentes sólidos de más de 8 mm de diámetro. Los resultados mostraron que el algoritmo de AA superó significativamente el modelo de predicción de riesgo (PLCO) m2012, especialmente cuando se agregaron datos demográficos al análisis radiómico. El estudio fue presentado en el Congreso Especial Virtual de la AACR sobre Inteligencia Artificial, Diagnóstico e Imagen, celebrado durante enero de 2021.

“Los mejores resultados se lograron en un subconjunto de pacientes menores de 64 años, mujeres, que no tenían enfisema, fumaban menos de 42 paquetes-año, no tenían antecedentes familiares de cáncer de pulmón y no eran fumadoras actuales”, dijo el autor principal y presentador del estudio, Rohan Abraham, PhD. “Combinado con el conocimiento y la experiencia de los médicos, esto tiene el potencial de permitir una intervención más temprana y reducir la necesidad de una TC de seguimiento”.

La clasificación actual de los nódulos pulmonares se basa en el tamaño del nódulo, un factor que es de uso limitado para los nódulos subcentimétricos, o en el tiempo de duplicación del volumen, una variable que requiere exámenes de TC de seguimiento. Como resultado, los nódulos pulmonares muy pequeños, con componentes sólidos de menos de 8 mm de diámetro (y, por lo tanto, por debajo del umbral de estratificación de riesgo Lung-RADS 4A), son muy difíciles de clasificar y, a menudo, se les da un plan de manejo de “esperar y ver”.

Enlace relacionado:
Centro de Investigación de Cáncer de la Columbia Británica

Miembro Oro
Analizador de gases en sangre POC
Stat Profile Prime Plus
Miembro Oro
VISOR EN PANTALLA DE DIAGNÓSTICO EN TIEMPO REAL
GEMweb Live
New
Procedure Light
Luxor 250 Series
New
Digital Radiography System
DigiEye 680

Print article

Canales

Técnicas Quirúrgicas

ver canal
Imagen: Imágenes moleculares de las glándulas suprarrenales en tres pacientes (Foto cortesía de QMUL)

Procedimiento guiado por ecografía endoscópica podría transformar el manejo de la presión arterial

El aldosteronismo primario (AP) es un trastorno hormonal que causa presión arterial alta en aproximadamente uno de cada 20 pacientes con hipertensión, pero que a menudo no se diagnostica ni se trata.... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.