Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.
Please note that the HospiMedica website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Ampronix,  Inc

Deascargar La Aplicación Móvil




Inteligencia artificial ayuda a detectar enfermedades raras

Por el equipo editorial de HospiMedica en español
Actualizado el 25 Jun 2019
Print article
Imagen: Un niño con síndrome de Kabuki (Fotografía cortesía de Wikimedia).
Imagen: Un niño con síndrome de Kabuki (Fotografía cortesía de Wikimedia).
Un estudio nuevo sugiere que se puede utilizar una red neuronal de inteligencia artificial (IA) para combinar automáticamente fotos de retratos y datos genéticos a fin de diagnosticar enfermedades raras de manera más eficiente.

El proyecto de priorización de datos del exoma por análisis de imagen (PEDIA), en desarrollo por la Universidad de Bonn (Alemania), GeneTalk (Bonn, Alemania), la Universidad Médica Charité (Charité; Berlín, Alemania) y otras instituciones, fue diseñado para interpretar datos del exoma analizando variantes de secuencia en fotografías de retratos e integrando los resultados utilizando la herramienta de fenotipificación DeepGestalt, un producto de FDNA (Herzliya, Israel), que fue entrenado con alrededor de 30.000 fotografías de retratos de personas afectadas por enfermedades sindrómicas raras.

En un estudio de prueba de concepto, los investigadores midieron el valor agregado del análisis de imágenes asistido por computadora al desempeño diagnóstico en una cohorte que constaba de 679 individuos con 105 trastornos monogénicos diferentes. Para cada caso por separado, se enviaron fotos frontales, características clínicas y las variantes causantes de la enfermedad. Los resultados mostraron que el análisis asistido por computadora de las fotos frontales mejoró la tasa de exactitud del 1% superior en más de 20 a 89%, y la tasa de exactitud del 10% superior, en más de 5 a 99% para el gen causante de la enfermedad. El estudio fue publicado el 5 de junio de 2019 en la revista Nature Genetics in Medicine.

“En combinación con el análisis facial, es posible filtrar los factores genéticos decisivos y priorizar los genes. La fusión de datos en la red neuronal reduce el tiempo de análisis de los datos y conduce a una mayor tasa de diagnóstico”, dijo el autor principal, el profesor Peter Krawitz, MD, PhD, director del Instituto de Estadística Genómica y Bioinformática de la Universidad de Bonn. “Esto es de gran interés científico para nosotros y también nos permite encontrar una causa en algunos casos no resueltos”.

“PEDIA es un ejemplo único de tecnologías de fenotipificación de próxima generación”, dijo Dekel Gelbman, director ejecutivo de FDNA. “Integrar un marco avanzado de análisis facial y de IA como DeepGestalt en el flujo de trabajo de análisis de variantes dará como resultado un nuevo paradigma para pruebas genéticas superiores”.

Muchas enfermedades raras causan rasgos faciales anormales característicos en los afectados, como el síndrome de Kabuki, que recuerda el maquillaje de una forma de teatro tradicional japonesa. Las cejas están arqueadas, la distancia ocular es ancha y los espacios entre los párpados son grandes. Otro ejemplo es la mucopolisacaridosis, que conduce a la deformación ósea, al crecimiento atrofiado y a las dificultades de aprendizaje. Dicha información de fenotipo hasta ahora solo ha sido accesible para flujos de trabajo de bioinformática después de la codificación en términos clínicos por dismorfólogos expertos.

Enlace relacionado:
Universidad de Bonn
GeneTalk
Universidad Médica Charité
FDNA





Print article

Canales

Téc. Quirúrgica

ver canal
Imagen: Un estudio nuevo afirma que los simuladores de realidad virtual pueden ayudar a clasificar la experiencia de los neurocirujanos (Fotografía cortesía de Helmut Bernhard / NEURO).

Simuladores de realidad virtual ayudan a determinar la experiencia de los neurocirujanos

Un estudio nuevo afirma, que los simuladores de realidad virtual (RV) pronto podrán clasificar la experiencia quirúrgica con alta precisión. Investigadores de la Universidad McGill (Montreal, Canadá)... Más

Bio Investigación

ver canal

Diseñan programa que proporciona soluciones integradas para investigación bioinformática

Dedicated Computing (Waukesha, WI, EUA), una compañía global de tecnología, informó que estará participando en el programa Intel Cluster Ready para ofrecer soluciones integradas de clústeres de computación de alto rendimiento para el mercado de ciencias de la vida.... Más

Negocios

ver canal
Imagen: Las investigaciones muestran que los pacientes de edad avanzada que no pueden acudir a los hospitales impulsan la demanda de dispositivos y servicios de monitorización multiparamétrica de pacientes (Fotografía cortesía de Boston Scientific).

Mercado de monitorización multiparamétrica es determinado por los pacientes que reciben atención en casa

Se proyecta que el mercado global de monitorización multiparamétrica de pacientes registre una TCAC del 5% entre 2019-2024, impulsado principalmente por el crecimiento rápido de la población que envejece... Más
Copyright © 2000-2019 Globetech Media. All rights reserved.