Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Sekisui Diagnostics UK Ltd.

Deascargar La Aplicación Móvil




Electrodo robótico blando ofrece solución mínimamente invasiva para la craneocirugía

Por el equipo editorial de HospiMedica en español
Actualizado el 29 May 2023
Print article
Imagen: Los electrodos desplegables son ideales para una craneocirugías mínimamente invasiva (Fotografía cortesía de EPFL)
Imagen: Los electrodos desplegables son ideales para una craneocirugías mínimamente invasiva (Fotografía cortesía de EPFL)

Los procedimientos médicos mínimamente invasivos ofrecen numerosos beneficios a los pacientes, incluido menor daño al tejido y períodos de recuperación más cortos. Sin embargo, crear un equipo que pueda pasar a través de una pequeña abertura y funcione de manera efectiva en el otro lado requiere un diseño innovador. Ahora, los investigadores han desarrollado un electrodo cortical que se puede insertar a través de una pequeña abertura en el cráneo y aún así proporcionar datos significativos sobre la actividad eléctrica del cerebro.

A los investigadores de la EPFL (Lausana, Suiza) se les encomendó la tarea de crear un gran conjunto de electrodos corticales que pudiera introducirse a través de una diminuta abertura en el cráneo. El objetivo era desplegar el dispositivo en el pequeño espacio de aproximadamente 1 mm entre el cráneo y la superficie del cerebro, todo sin causar daño al cerebro. Los investigadores inventaron un electrodo robótico suave, capaz de insertarse a través de una pequeña abertura en el cráneo, que despliega una serie de brazos en espiral, lo que permite realizar mediciones de electrocorticografía en un área de superficie cerebral relativamente más grande. Esta tecnología podría ser extremadamente beneficiosa para los neurocirujanos que buscan mapear las regiones del cerebro responsables de los ataques epilépticos y luego abordar quirúrgicamente estas áreas problemáticas. Al minimizar la parte del cráneo extirpada durante la cirugía, la recuperación del paciente es más rápida y se reduce el trauma asociado con dichos procedimientos.

El prototipo inicial consta de un conjunto de electrodos lo suficientemente pequeño como para pasar a través de un orificio de 2 cm de diámetro, pero cuando se despliega, se extiende a lo largo de una superficie de 4 cm de diámetro. Cuenta con seis brazos en forma de espiral diseñados para maximizar el área de superficie del conjunto de electrodos y, por lo tanto, la cantidad de electrodos que interactúan con la corteza. Los brazos rectos pueden llevar una distribución desigual de los electrodos y una superficie de contacto reducida con el cerebro. Parecido a una mariposa en espiral metida de forma compacta dentro de su capullo antes de la transformación, el conjunto de electrodos, con sus brazos en espiral, está cuidadosamente contenido dentro de un tubo cilíndrico, o cargador, listo para insertarse a través de la pequeña abertura del cráneo. Un mecanismo de activación de desviación inspirado en la robótica blanda permite que los brazos en espiral se desplieguen suavemente sobre el tejido cerebral sensible, uno a la vez.

El conjunto de electrodos se parece a un guante de goma, con electrodos flexibles estampados en un lado de cada "dedo" en forma de espiral. El "guante" se da la vuelta y se aloja dentro del cargador cilíndrico. Para el despliegue, se inserta líquido en cada "dedo invertido" individualmente, haciendo que se revierta y se despliegue sobre el cerebro. El patrón de electrodos se crea evaporando oro flexible sobre materiales elastoméricos altamente adaptables. El conjunto de electrodos desplegables se ha probado con éxito en un minicerdo.

“Las neurotecnologías mínimamente invasivas son métodos esenciales para ofrecer terapias eficientes y adaptadas al paciente”, dijo Stéphanie Lacour, profesora del Instituto EPFL Neuro X. “Necesitábamos diseñar un conjunto de electrodos en miniatura capaz de plegarse, pasar a través de un pequeño orificio en el cráneo y luego desplegarse en una superficie plana que descansa sobre la corteza. Luego combinamos conceptos de bioelectrónica blanda y robótica blanda”.

Enlaces relacionados:
EPFL  

Miembro Oro
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Miembro Oro
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Miembro Plata
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Neonatal Transport Ventilator
Babylite

Print article

Canales

Cuidados Criticos

ver canal
Imagen: Los investigadores han desarrollado un hidrogel avanzado deadelgazamiento por cizallamiento para la reparación del aneurisma (Fotografía cortesía de TIBI)

Nuevo hidrogel con capacidades mejoradas para tratar aneurismas y detener su progresión

Los aneurismas pueden desarrollarse en vasos sanguíneos de diferentes áreas del cuerpo, a menudo como resultado de aterosclerosis, infecciones, enfermedades inflamatorias y otros factores de riesgo.... Más

Cuidados de Pacientes

ver canal
Imagen: La solución recientemente lanzada puede transformar la programación del quirófano e impulsar las tasas de utilización  (Fotografía cortesía de Fujitsu)

Solución de optimización de la capacidad quirúrgica ayuda a hospitales a impulsar utilización de quirófanos

Una solución innovadora tiene la capacidad de transformar la utilización de la capacidad quirúrgica al atacar la causa raíz de las ineficiencias los bloques de tiempo quirúrgico.... Más

TI

ver canal
Imagen: El primer modelo específico de la institución proporciona una ventaja de desempeñoa significativa sobre los modelos actuales basados en la población (Fotografía cortesía de Mount Sinai)

Modelo de aprendizaje automático mejora predicción del riesgo de mortalidad para pacientes de cirugía cardíaca

Se han implementado algoritmos de aprendizaje automático para crear modelos predictivos en varios campos médicos, y algunos han demostrado mejores resultados en comparación con sus... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.