Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GC Medical Science corp.

Deascargar La Aplicación Móvil




Algoritmo predice supervivencia en insuficiencia cardiaca con exactitud

Por el equipo editorial de HospiMedica en español
Actualizado el 04 Jun 2018
Un equipo de investigadores de la UCLA (Los Ángeles, EUA) ha desarrollado un nuevo algoritmo que predice con mayor precisión qué personas sobrevivirán a la insuficiencia cardíaca y durante cuánto tiempo, y si tendrán que recibir un trasplante de corazón o no. Más...
El algoritmo permitirá a los médicos llevar a cabo evaluaciones más personalizadas de las personas que esperan trasplantes de corazón, lo que permite a los proveedores de atención médica utilizar de manera eficiente los recursos limitados que salvan vidas y reducir los costos de atención médica.

El algoritmo, denominado Trees of Predictors, utiliza aprendizaje automático y toma en consideración 53 puntos de datos, incluyendo la edad, el sexo, el índice de masa corporal, el tipo de sangre y la química sanguínea, para abordar las diferencias entre las personas que esperan trasplantes de corazón y la compatibilidad entre los posibles receptores de trasplantes de corazón y los donantes. Usando estos puntos de datos, el algoritmo predice cuánto vivirán las personas con insuficiencia cardíaca, dependiendo de si recibirán un trasplante o no. El algoritmo también puede analizar diferentes escenarios posibles de riesgo para posibles candidatos de trasplante con el fin de ayudar a los médicos a evaluar más a fondo a las personas que pueden ser candidatos para trasplantes de corazón, y es lo suficientemente flexible como para incorporar más datos a medida que evolucionan los tratamientos.

Los investigadores de la UCLA probaron el algoritmo utilizando 30 años de datos sobre personas registradas con la Red Unida para Compartir Órganos, una organización sin fines de lucro que hace la correspondencia entre los donantes y los receptores de trasplantes en los EUA Los investigadores encontraron que el algoritmo proporcionaba predicciones significativamente mejores que los modelos de predicción actualmente utilizados por la mayoría de los médicos para proyectar, cuáles de los receptores de trasplantes vivirían durante al menos tres años después del trasplante. El algoritmo de UCLA superó a los modelos en un 14% al predecir correctamente que 2.442 receptores de trasplantes de corazón de los 17.441 que recibieron trasplantes vivieron al menos ese tiempo después de la cirugía. Según los investigadores, el algoritmo Trees of Predictors también se puede utilizar para recopilar información de bases de datos médicas y otros tipos de bases de datos complejas.

“Nuestro trabajo sugiere que se podrían salvar más vidas con la aplicación de este nuevo algoritmo basado en el aprendizaje automático”, dijo Mihaela van der Schaar, profesora de la rectoría de ingeniería eléctrica y de informática de la facultad de ingeniería Samueli de UCLA, quien dirigió el estudio. “Sería especialmente útil para determinar qué pacientes necesitan los trasplantes de corazón con mayor urgencia y qué pacientes son buenos candidatos para terapias de puentes como los dispositivos de asistencia mecánica implantados”.

“Siguiendo este método, podemos identificar un número significativo de pacientes que son buenos candidatos para el trasplante, pero que no fueron identificados como tales usando los métodos tradicionales”, dijo el Dr. Martin Cadeiras, cardiólogo de la Facultad de Medicina David Geffen de la UCLA. “Esta metodología se asemeja mejor al proceso de pensamiento humano al permitir múltiples soluciones alternativas para el mismo problema, pero teniendo en cuenta la variabilidad de cada individuo”.




Miembro Oro
Analizador de gases en sangre POC
Stat Profile Prime Plus
Miembro Oro
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Thoracolumbar & Sacropelvic System
Ennovate TLSP
New
Needle Guide Disposable Kit
Verza
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a HospiMedica.es y acceda a las noticias y eventos que afectan al mundo de la Medicina.
  • Edición gratuita de la versión digital de HospiMedica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista HospiMedica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de HospiMedica en Español digital
  • Boletín de HospiMedica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Cuidados Criticos

ver canal
Imagen: muestras de tejido cardíaco del estudio (foto cortesía de Nathan Gianneschi/Northwestern University)

Nueva potente terapia inyectable podría prevenir la insuficiencia cardíaca tras un infarto

Según los Centros para el Control y la Prevención de Enfermedades (CDC) de Estados Unidos, 6,7 millones de estadounidenses de 20 años o más viven con insuficiencia cardíaca,... Más

Técnicas Quirúrgicas

ver canal
Imagen: el profesor Bumsoo Han y la  investigadora postdoctoral Sae Rome Choi fueron coautores de un estudio sobre el uso del origami de ADN para mejorar la obtención de imágenes de tejido pancreático denso (foto cortesía de Fred Zwicky/University of Illinois Urbana-Champaign)

El origami de ADN mejora la imagenología del tejido pancreático denso para la detección del cáncer

Uno de los desafíos de la lucha contra el cáncer de páncreas es encontrar maneras de penetrar el tejido denso del órgano para definir los límites entre el tejido maligno... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.