Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GC Medical Science corp.

Deascargar La Aplicación Móvil




IA es mejor que los humanos para el diagnóstico de las lesiones dérmicas

Por el equipo editorial de HospiMedica en español
Actualizado el 03 Jul 2019
Un estudio nuevo muestra que los clasificadores de inteligencia artificial (IA) con aprendizaje automático (AA), superan a los expertos humanos en el diagnóstico de lesiones cutáneas pigmentadas.

Investigadores de la Universidad Médica de Viena (MedUni; Austria), la Universidad de Queensland (UQ; Brisbane, Australia), la Universidad de Tel Aviv (TAU; Israel) y otras instituciones miembros de la Colaboración Internacional de Imagenología de la Piel (Skin Imaging Collaboration, ISIC) organizaron un desafío internacional para comparar las habilidades de diagnóstico de 511 médicos con 139 algoritmos de computadora de 77 laboratorios diferentes de aprendizaje automático. Se utilizó una base de datos de más de 10.000 imágenes como conjunto de entrenamiento para las máquinas.

La base de datos incluyó lesiones pigmentadas tanto benignas como malignas, que se clasificaron en una de las siete categorías de enfermedades predefinidas. Estas incluyeron carcinoma intraepitelial, incluyendo queratosis actínicas y enfermedad de Bowen; carcinoma basocelular; lesiones queratinocíticas benignas, que incluyen lentigo solar, queratosis seborreica y queratosis similar al liquen plano; dermatofibroma; melanoma; nevo melanocítico; y lesiones vasculares. Los dos resultados principales fueron las diferencias en el número de diagnósticos específicos correctos por lote entre todos los lectores humanos y los tres algoritmos principales, y entre los expertos humanos y los tres algoritmos principales.

Los resultados revelaron que al comparar todos los lectores humanos con todos los algoritmos de aprendizaje automático, los algoritmos lograron una media de 2,01 diagnósticos más correctos que los lectores humanos. Los 27 expertos humanos con más de 10 años de experiencia lograron una media de 18,78 respuestas correctas, en comparación con 25,43 respuestas correctas para los tres algoritmos de aprendizaje automático principales. Para las imágenes en el conjunto de pruebas que se recopilaron de fuentes no incluidas en el conjunto de entrenamiento, los humanos seguían teniendo resultados por debajo, pero la diferencia fue menor, con un 11,4%. El estudio fue publicado el 11 de junio de 2019 en la revista The Lancet Oncology.

“Dos tercios de todas las máquinas participantes eran mejores que los humanos; esto no significa que las máquinas reemplacen a los humanos en el diagnóstico de cáncer de piel. La computadora solo analiza una instantánea óptica y es realmente buena en eso. Sin embargo, en la vida real, el diagnóstico es una tarea compleja”, dijo el autor principal, Philipp Tschandl, PhD, de la MedUni Viena. “Los médicos generalmente examinan a todo el paciente y no solo a las lesiones individuales. Cuando los humanos hacen un diagnóstico, también tienen en cuenta información adicional, como la duración de la enfermedad, si el paciente tiene un riesgo alto o bajo, y la edad del paciente”.

La creciente popularidad de las técnicas de aprendizaje automático para aplicaciones médicas es evidente por la cantidad creciente de investigaciones, la cantidad de productos que obtuvieron aprobaciones reglamentarias y los esfuerzos empresariales en los últimos años. El financiamiento de capital de riesgo para las compañías de IA fue de aproximadamente 3.600 millones de dólares en los últimos cinco años, subrayando la creciente apreciación del valor que el aprendizaje automático puede aportar a la comunidad médica.

Enlace relacionado:
Universidad Médica de Viena
Universidad de Queensland
Universidad de Tel Aviv
Colaboración Internacional de Imagenología de la Piel





Miembro Oro
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Miembro Oro
Analizador de gases en sangre POC
Stat Profile Prime Plus
New
Anesthesia Cart
UTGSU-333369-DKB
New
Sling
GoComfort
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a HospiMedica.es y acceda a las noticias y eventos que afectan al mundo de la Medicina.
  • Edición gratuita de la versión digital de HospiMedica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista HospiMedica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de HospiMedica en Español digital
  • Boletín de HospiMedica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Cuidados Criticos

ver canal
Imagen: muestras de tejido cardíaco del estudio (foto cortesía de Nathan Gianneschi/Northwestern University)

Nueva potente terapia inyectable podría prevenir la insuficiencia cardíaca tras un infarto

Según los Centros para el Control y la Prevención de Enfermedades (CDC) de Estados Unidos, 6,7 millones de estadounidenses de 20 años o más viven con insuficiencia cardíaca,... Más

Técnicas Quirúrgicas

ver canal
Imagen: el profesor Bumsoo Han y la  investigadora postdoctoral Sae Rome Choi fueron coautores de un estudio sobre el uso del origami de ADN para mejorar la obtención de imágenes de tejido pancreático denso (foto cortesía de Fred Zwicky/University of Illinois Urbana-Champaign)

El origami de ADN mejora la imagenología del tejido pancreático denso para la detección del cáncer

Uno de los desafíos de la lucha contra el cáncer de páncreas es encontrar maneras de penetrar el tejido denso del órgano para definir los límites entre el tejido maligno... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.