Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the HospiMedica website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Ampronix,  Inc

Deascargar La Aplicación Móvil




Eventos

ATENCIÓN: Debido a la EPIDEMIA DE CORONAVIRUS, ciertos eventos están siendo reprogramados para una fecha posterior o cancelados por completo. Verifique con el organizador del evento o el sitio web antes de planificar cualquier evento próximo.

IA es mejor que los humanos para el diagnóstico de las lesiones dérmicas

Por el equipo editorial de HospiMedica en español
Actualizado el 03 Jul 2019
Print article
Imagen: Un estudio nuevo sugiere que los algoritmos informáticos pueden identificar las lesiones de la piel mejor que los dermatólogos expertos (Fotografía cortesía de MedUni Viena/Shutterstock).
Imagen: Un estudio nuevo sugiere que los algoritmos informáticos pueden identificar las lesiones de la piel mejor que los dermatólogos expertos (Fotografía cortesía de MedUni Viena/Shutterstock).
Un estudio nuevo muestra que los clasificadores de inteligencia artificial (IA) con aprendizaje automático (AA), superan a los expertos humanos en el diagnóstico de lesiones cutáneas pigmentadas.

Investigadores de la Universidad Médica de Viena (MedUni; Austria), la Universidad de Queensland (UQ; Brisbane, Australia), la Universidad de Tel Aviv (TAU; Israel) y otras instituciones miembros de la Colaboración Internacional de Imagenología de la Piel (Skin Imaging Collaboration, ISIC) organizaron un desafío internacional para comparar las habilidades de diagnóstico de 511 médicos con 139 algoritmos de computadora de 77 laboratorios diferentes de aprendizaje automático. Se utilizó una base de datos de más de 10.000 imágenes como conjunto de entrenamiento para las máquinas.

La base de datos incluyó lesiones pigmentadas tanto benignas como malignas, que se clasificaron en una de las siete categorías de enfermedades predefinidas. Estas incluyeron carcinoma intraepitelial, incluyendo queratosis actínicas y enfermedad de Bowen; carcinoma basocelular; lesiones queratinocíticas benignas, que incluyen lentigo solar, queratosis seborreica y queratosis similar al liquen plano; dermatofibroma; melanoma; nevo melanocítico; y lesiones vasculares. Los dos resultados principales fueron las diferencias en el número de diagnósticos específicos correctos por lote entre todos los lectores humanos y los tres algoritmos principales, y entre los expertos humanos y los tres algoritmos principales.

Los resultados revelaron que al comparar todos los lectores humanos con todos los algoritmos de aprendizaje automático, los algoritmos lograron una media de 2,01 diagnósticos más correctos que los lectores humanos. Los 27 expertos humanos con más de 10 años de experiencia lograron una media de 18,78 respuestas correctas, en comparación con 25,43 respuestas correctas para los tres algoritmos de aprendizaje automático principales. Para las imágenes en el conjunto de pruebas que se recopilaron de fuentes no incluidas en el conjunto de entrenamiento, los humanos seguían teniendo resultados por debajo, pero la diferencia fue menor, con un 11,4%. El estudio fue publicado el 11 de junio de 2019 en la revista The Lancet Oncology.

“Dos tercios de todas las máquinas participantes eran mejores que los humanos; esto no significa que las máquinas reemplacen a los humanos en el diagnóstico de cáncer de piel. La computadora solo analiza una instantánea óptica y es realmente buena en eso. Sin embargo, en la vida real, el diagnóstico es una tarea compleja”, dijo el autor principal, Philipp Tschandl, PhD, de la MedUni Viena. “Los médicos generalmente examinan a todo el paciente y no solo a las lesiones individuales. Cuando los humanos hacen un diagnóstico, también tienen en cuenta información adicional, como la duración de la enfermedad, si el paciente tiene un riesgo alto o bajo, y la edad del paciente”.

La creciente popularidad de las técnicas de aprendizaje automático para aplicaciones médicas es evidente por la cantidad creciente de investigaciones, la cantidad de productos que obtuvieron aprobaciones reglamentarias y los esfuerzos empresariales en los últimos años. El financiamiento de capital de riesgo para las compañías de IA fue de aproximadamente 3.600 millones de dólares en los últimos cinco años, subrayando la creciente apreciación del valor que el aprendizaje automático puede aportar a la comunidad médica.

Enlace relacionado:
Universidad Médica de Viena
Universidad de Queensland
Universidad de Tel Aviv
Colaboración Internacional de Imagenología de la Piel





Print article

Canales

Cuidados Criticos

ver canal
Imagen: Un generador pequeño de ozono ayuda a sanar las heridas (Fotografía cortesía de la Universidad de Purdue)

Parche de terapia de ozono trata las infecciones resistentes a los antibióticos

Un sistema de ozonoterapia tópica portátil que se puede llevar puesto podría proporcionar un enfoque alternativo prometedor para el tratamiento de heridas infectadas y que no cicatrizan.... Más

Cuidados de Pacientes

ver canal
Imagen: La estación de trabajo móvil Capsa Trio (Fotografía cortesía de Capsa Healthcare)

Estación de trabajo de computación móvil mejora el desempeño de enfermería

Una plataforma de punto de atención (POC) nueva moviliza las historias clínicas electrónicas y respalda una gestión de medicamentos eficiente y exacta. La estación de trabajo móvil Trio, de Capsa Healthcare... Más

Negocios

ver canal
Imagen: En la MEDICA de este año, el MCHF presentará soluciones de vanguardia y celebrará sesiones sobre Internet de las Cosas Médicas (IoMT) (Fotografía cortesía de Prezi).

Foro de atención en salud MEDICA presentará soluciones de vanguardia

Los visitantes de la feria comercial MEDICA de este año verán innovaciones de primera línea para el progreso médico del mañana. MEDICA es la feria médica más grande del mundo con más de 5.... Más
Copyright © 2000-2020 Globetech Media. All rights reserved.