Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the HospiMedica website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
PURITAN MEDICAL

Deascargar La Aplicación Móvil





Red neuronal de aprendizaje profundo detecta rápidamente infecciones por COVID-19 mediante imágenes de rayos X

Por el equipo editorial de HospiMedica en español
Actualizado el 30 Nov 2021
Print article
Ilustración
Ilustración

Una red neuronal de aprendizaje profundo puede detectar rápidamente infecciones por COVID-19 mediante imágenes de rayos X.

La red neuronal de aprendizaje profundo llamada CORONA-Net fue desarrollada por científicos de la Universidad de la Columbia Británica (Kelowna, BC Canadá) para ayudar a los médicos que no tienen acceso a las pruebas de reacción en cadena de la polimerasa (PCR) y necesitan una forma de detectar rápidamente a los pacientes con COVID-19. A medida que la COVID-19 sigue apareciendo en los titulares de todo el mundo, las personas se han acostumbrado a la idea de realizar pruebas rápidas para determinar si han sido infectadas. La prueba viral solo indica si existe una infección actual, pero no si hubo una infección previa. La prueba de anticuerpos alternativa utiliza una muestra de sangre y puede detectar si hubo una infección previa con el virus SARS-CoV-2, incluso si no hay síntomas actuales. Sin embargo, la prueba de PCR puede ser poco común en muchos países y generalmente cuesta varios cientos de dólares cada vez. Los médicos de todo el mundo necesitan una forma de evaluar rápidamente a los pacientes para detectar la COVID-19 para que puedan comenzar el tratamiento inmediato para los pacientes con el virus

Los investigadores de UBC Okanagan, que dicen que las pruebas rápidas pueden ser limitadas y costosas en muchos países, están probando otro método de prueba. Y creen, gracias a la inteligencia artificial, que han encontrado uno. El equipo de investigación ha desarrollado CORONA-Net, una red neuronal de aprendizaje profundo que puede detectar rápidamente infecciones por COVID-19 mediante imágenes de rayos X. En muchos países, las personas optan por la radiografía de tórax debido al costo de una prueba de PCR o su falta de disponibilidad. Sin embargo, a veces es difícil que un especialista examine la radiografía y la detección precisa de la infección puede llevar tiempo. Pero al utilizar CORONA-NET, el sistema de inteligencia artificial puede marcar los casos sospechosos para que se realice un seguimiento rápido y se examinen rápidamente.

La arquitectura CORONA-Net desarrollada aumenta sustancialmente la sensibilidad y el valor predictivo positivo (VPP) de las predicciones, lo que convierte a CORONA-Net en una herramienta valiosa cuando se trata de utilizar radiografías de tórax para diagnosticar la COVID-19. Según los investigadores, el CORONA-Net desarrollado pudo producir resultados con una precisión de más del 95% en la clasificación de casos de COVID-19 a partir de imágenes digitales de rayos X de tórax. La precisión de la detección de COVID-19 por CORONA-Net seguirá aumentando a medida que crezca el conjunto de datos. CORONA-Net puede mejorarse automáticamente con el tiempo y autoaprenderse para ser más preciso.

“La COVID-19 generalmente causa neumonía en los pulmones humanos, que se puede detectar en imágenes de rayos X. Estos conjuntos de datos de rayos X, de personas con neumonía causada por COVID-19, de personas con neumonía causada por otras enfermedades, así como radiografías de personas sanas, permiten la posibilidad de crear redes de aprendizaje profundo que pueden diferenciar entre imágenes de personas con COVID-19 y personas que no tienen la enfermedad”, dijo el estudiante graduado Sherif Elbishlawi, quien ayudó a desarrollar CORONA-Net.

“Los resultados del conjunto de pruebas se obtuvieron y se pueden ver con una sensibilidad del 100% a la clase COVID-19. Había una sensibilidad del 95% en la clasificación de la clase de neumonía y una sensibilidad del 95% en la clasificación de la clase normal”, agregó. "Estos resultados muestran que CORONA-Net ofrece una predicción muy precisa con la mayor sensibilidad a la clase COVID-19".

Enlaces relacionados:
Universidad de la Columbia Británica


Print article
Radcal

Canales

Cuidados Criticos

ver canal
Imagen: Electrodos de esponja en una variedad de espesores (Fotografía cortesía de ACS Nano 2022)

Los electrodos de esponja de bajo costo mejoran la detección de señales para monitoreo médico

Para monitorear los ritmos cardíacos y la función muscular, los médicos a menudo colocan electrodos en la piel de un paciente, detectando las señales eléctricas que se... Más

Téc. Quirúrgica

ver canal
Imagen: La deflexión mecánica evita que las células inmunes se acumulen alrededor del dispositivo (Fotografía cortesía del MIT)

Nuevo diseño evita acumulación de tejido cicatricial alrededor de implantes médicos

Los dispositivos implantables que liberan insulina en el cuerpo prometen ser una forma alternativa de tratar la diabetes sin inyecciones de insulina o inserciones de cánulas. Sin embargo, un obstáculo... Más

Cuidados de Pacientes

ver canal
Imagen: La película biomolecular se puede tomar con pinzas y colocarse sobre una herida (Fotografía cortesía de TUM)

Película biomolecular para cicatrización de heridas se adhiere al tejido sensible y libera ingredientes activos

Los vendajes convencionales pueden ser muy efectivos para tratar pequeñas abrasiones en la piel, pero las cosas se complican cuando se trata de lesiones en los tejidos blandos, como en la lengua... Más

Negocios

ver canal
Imagen: El mercado global del sistema de endoscopía capsular está creciendo a un ritmo rápido (Fotografía cortesía de Pexels)

Mercado de sistemas de cápsula endoscópica impulsado por la creciente preferencia por procedimientos de detección mínimamente invasivos

La endoscopía capsular es generalmente una técnica no invasiva que permite un examen completo del tracto gastrointestinal con el uso del dispositivo desechable e inalámbrico conocido... Más
Copyright © 2000-2022 Globetech Media. All rights reserved.