Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the HospiMedica website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Detecto

Deascargar La Aplicación Móvil





Algoritmo de IA identifica a los pacientes hospitalizados con mayor riesgo de morir por COVID-19

Por el equipo editorial de HospiMedica en español
Actualizado el 20 May 2022
Print article
Imagen: El sistema de alerta temprana pronostica quién necesita cuidados intensivos debido a la COVID-19 (Fotografía cortesía de Unsplash)
Imagen: El sistema de alerta temprana pronostica quién necesita cuidados intensivos debido a la COVID-19 (Fotografía cortesía de Unsplash)

Los científicos han desarrollado y validado un algoritmo que puede ayudar a los profesionales de la salud a identificar quién tiene más riesgo de morir por COVID-19 cuando ingresa en un hospital. La herramienta, que utiliza inteligencia artificial (IA), podría ayudar a los médicos a dirigir los recursos de atención crítica a quienes más los necesitan, y será especialmente valiosa para los países con recursos limitados.

Para desarrollar la herramienta, un equipo internacional, dirigido por la Universidad de Viena (Viena, Austria), utilizó datos bioquímicos de extracciones de sangre de rutina realizadas en casi 30.000 pacientes hospitalizados en más de 150 hospitales en España, EUA, Honduras, Bolivia y Argentina, entre marzo de 2020 y febrero de 2022. Esto significa que pudieron capturar datos de personas con diferentes estados inmunitarios (vacunados, no vacunados y con inmunidad natural) y de personas infectadas con todas las variantes del SARS-CoV-2, desde el virus que surgió en Wuhan, China hasta la última variante, Omicron.

El algoritmo resultante, llamado Predictor del Resultado de la Enfermedad COVID-19 (Disease Outcome COVID-19, CODOP), utiliza mediciones de 12 moléculas de sangre que normalmente se recolectan durante la admisión. Esto significa que la herramienta predictiva se puede integrar fácilmente en la atención clínica de cualquier hospital. CODOP se desarrolló en un proceso de varios pasos, utilizando inicialmente datos de pacientes hospitalizados en más de 120 hospitales en España, para ‘entrenar’ el sistema de IA para predecir las características de un mal pronóstico. El siguiente paso fue asegurarse de que la herramienta funcionara independientemente del estado inmunitario de los pacientes o de la variante de COVID-19, por lo que probaron el algoritmo en varios subgrupos de pacientes geográficamente dispersos. La herramienta también funcionó bien para predecir el riesgo de muerte en el hospital durante este escenario fluctuante de la pandemia, lo que sugiere que las mediciones en las que se basa CODOP son biomarcadores verdaderamente significativos de si es probable que un paciente con COVID-19 se deteriore.

Para probar si el momento de realizar los análisis de sangre afecta el desempeño de la herramienta, el equipo comparó datos de diferentes puntos de tiempo de extracción de sangre antes de que los pacientes se recuperaran o murieran. Descubrieron que el algoritmo puede predecir la supervivencia o la muerte de pacientes hospitalizados con gran exactitud hasta nueve días antes de que ocurra cualquiera de los resultados. Finalmente, crearon dos versiones diferentes de la herramienta para usar en escenarios donde los recursos de atención médica funcionan normalmente o están bajo una gran presión. Bajo una carga operativa normal, los médicos pueden optar por utilizar una versión de “sobretriaje”, que es muy sensible para detectar a las personas con mayor riesgo de muerte, a expensas de captar a algunas personas que no requerían cuidados críticos. El modelo alternativo de “subtriage” minimiza la posibilidad de seleccionar erróneamente a las personas con menor riesgo de morir, brindando a los médicos una mayor certeza de que dirigen la atención a las personas con mayor riesgo cuando los recursos son muy limitados.

“El desempeño de CODOP en grupos de pacientes diversos y geográficamente dispersos y la facilidad de uso sugieren que podría ser una herramienta valiosa en la clínica, especialmente en países con recursos limitados”, dijo el líder de este proyecto internacional y autor principal, David Gómez-Varela, antiguo líder del grupo Max Planck y actual científico principal de la División de Farmacología y Toxicología de la Universidad de Viena. “Nuestro trabajo se concentra ahora en un modelo dual de seguimiento adaptado al escenario pandémico actual de aumento de infecciones y protección inmunológica acumulativa, que predecirá la necesidad de hospitalización en las siguientes 24 horas para los pacientes en atención primaria y la admisión en cuidados intensivos en las 48 horas siguientes para aquellos ya hospitalizados. Esperamos ayudar a los sistemas de atención médica a restaurar los estándares anteriores de atención de rutina antes de que se produjera la pandemia”.

Enlaces relacionados:
Universidad de Viena  

ANALIZADOR DE SANGRE COMPLETA PMB
GEM Premier ChemSTAT
New
Proveedor de oro
Blood Glucose Reference Analyzer
Nova Primary
New
Plastic Jerricans
Diamond RealSeal Jerricans
New
POC Quantitative Immunoassay Platform
ProciseDx Instrument

Print article
Radcal

Canales

Cuidados Criticos

ver canal
Imagen: PATHFAST es un inmunoanalizador compacto con un rendimiento de ensayo superior (Fotografía cortesía de PHC Europe)

Inmunoanalizador de sobremesa ofrece resultados con calidad de laboratorio en POC para salas de cardiología, cuidados intensivos y urgencias

Un inmunoanalizador compacto con un rendimiento de ensayo superior combina la precisión de un analizador de laboratorio a gran escala con la flexibilidad de una solución móvil, lo... Más

Téc. Quirúrgica

ver canal
Imagen: Biosensores miniaturizados para implantes mínimamente invasivos (Fotografía cortesía de la Universidad de Cambridge)

Biosensores miniaturizados abren nuevas posibilidades para implantes mínimamente invasivos

El diagnóstico y el seguimiento de enfermedades a menudo se basan en la detección de moléculas llamadas "biomarcadores". Sin embargo, la detección de dichos biomarcadores... Más

Cuidados de Pacientes

ver canal
Imagen: Las básculas de camilla digitales están diseñadas específicamente para situaciones emergentes en hospitales y salas de emergencias (Fotografía cortesía de DETECTO)

Básculas de camilla digitales portátiles de alta capacidad brindan pesaje de precisión para pacientes en sala de emergencias

Para las llegadas de emergencia a un hospital, el tiempo es esencial para tomar el peso de los pacientes. Ahora, las básculas de camilla digitales diseñadas específicamente para situaciones... Más

TI

ver canal
Imagen: El uso de datos digitales puede mejorar los resultados de salud (Fotografía cortesía de Unsplash)

Según un estudio, registros médicos electrónicos pueden ser clave para mejorar la atención al paciente

Cuando se transfiere a un paciente de un hospital a un especialista o centro de rehabilitación cercano, a menudo es difícil para el personal del nuevo centro acceder a los registros médicos... Más

Negocios

ver canal
Imagen: Se estima que el mercado global de instrumentos de visualización para CMI superará los 21 mil millones de dólares en 2031 (Fotografía cortesía de Pexels)

Mercado global de instrumentos de visualización para CMI impulsado por la creciente demanda de procedimientos endoscópicos

Los últimos años han sido testigos de un aumento en la preferencia de los pacientes por cirugías médicas que involucran menos incisiones. Como resultado, la demanda de instrumentos... Más
Copyright © 2000-2022 Globetech Media. All rights reserved.