Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the HospiMedica website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Thermo Fisher Scientific - Direct Effect Media

Deascargar La Aplicación Móvil





Modelo de aprendizaje automático usa prueba en sangre para predecir la supervivencia de los pacientes con COVID-19 críticamente enfermos

Por el equipo editorial de HospiMedica en español
Actualizado el 24 Jan 2022
Print article
Imagen: Instalación central de proteómica en el hospital universitario Charité de Berlín (Fotografía cortesía de Johannes Hartl, Charité)
Imagen: Instalación central de proteómica en el hospital universitario Charité de Berlín (Fotografía cortesía de Johannes Hartl, Charité)
Según un estudio nuevo, se puede analizar una sola muestra de sangre de un paciente gravemente enfermo con COVID-19 mediante un modelo de aprendizaje automático que utiliza proteínas del plasma sanguíneo para predecir la supervivencia, semanas antes del resultado.

Científicos de la Charité-Universitätsmedizin Berlín (Berlín, Alemania) descubrieron que los niveles de 14 proteínas en la sangre de pacientes críticos con COVID-19 se asociaban con la supervivencia. Los sistemas de atención médica de todo el mundo luchan para acomodar un gran número de pacientes con COVID-19 gravemente enfermos que necesitan atención médica especial, principalmente si se identifica que tienen un alto riesgo. Las evaluaciones de riesgo clínicamente establecidas en la medicina de cuidados intensivos, como SOFA o APACHE II, muestran solo una confiabilidad limitada para predecir los resultados futuros de la enfermedad por COVID-19.

En el nuevo estudio, los investigadores estudiaron los niveles de 321 proteínas en muestras de sangre tomadas en 349 puntos de tiempo de 50 pacientes con COVID-19 en estado crítico que eran tratados en dos centros de atención médica independientes en Alemania y Austria. Se utilizó un enfoque de aprendizaje automático para encontrar asociaciones entre las proteínas medidas y la supervivencia del paciente. Quince de los pacientes de la cohorte fallecieron; el tiempo medio desde el ingreso hasta la muerte fue de 28 días. Para los pacientes que sobrevivieron, la mediana de tiempo de hospitalización fue de 63 días.

Los investigadores identificaron 14 proteínas que, con el tiempo, cambiaron en direcciones opuestas para los pacientes que sobreviven en comparación con los pacientes que no sobreviven en cuidados intensivos. Luego, el equipo desarrolló un modelo de aprendizaje automático para predecir la supervivencia en función de una medición de proteínas relevantes en un solo punto de tiempo y probó el modelo en una cohorte de validación independiente de 24 pacientes con COVID-19 gravemente enfermos. El modelo demostró un alto poder predictivo en esta cohorte, prediciendo correctamente el resultado de 18 de 19 pacientes que sobrevivieron y cinco de cinco pacientes que fallecieron.

Los investigadores concluyeron que las pruebas de proteínas en sangre, si se validan en cohortes más grandes, pueden ser útiles tanto para identificar a los pacientes con el mayor riesgo de mortalidad como para evaluar si un tratamiento determinado cambia la trayectoria proyectada de un paciente individual.

Enlace relacionado:
Charité-Universitätsmedizin Berlín


Print article

Canales

Cuidados Criticos

ver canal
Imagen: Un chupete inalámbrico y bioelectrónico podría eliminar la necesidad de extracciones de sangre invasiva (Fotografía cortesía de WSU)

Chupete inteligente elimina la necesidad de extracciones de sangre invasivas para controlar electrolitos de bebés en la UCIN

Los bebés en Unidades de Cuidados Intensivos Neonatales o UCIN tienen que soportar extracciones de sangre dos veces al día para monitorear sus electrolitos y alertar a los cuidadores si los... Más

Téc. Quirúrgica

ver canal
Imagen: Mazor X Stealth Edition es un sistema de guía robótico para la cirugía espinal (Fotografía cortesía de Medtronic)

Robot quirúrgico utiliza TC preoperatorias de pacientes para planificar fusiones espinales

A medida que la medicina personalizada continúa cobrando más importancia en el campo de la atención médica, los cirujanos ortopédicos utilizan los avances en la tecnología... Más

Cuidados de Pacientes

ver canal
Imagen: La futura tecnología de salud portátil podría medir los gases liberados de la piel (Fotografía cortesía de Pexels)

Tecnología de salud portátil podría medir los gases liberados de la piel para monitorear enfermedades metabólicas

La mayoría de las investigaciones sobre la medición de biomarcadores humanos, que son medidas de la salud del cuerpo, se basan en señales eléctricas para detectar las sustancias... Más
Copyright © 2000-2022 Globetech Media. All rights reserved.