Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the HospiMedica website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Sekisui Diagnostics UK Ltd.

Deascargar La Aplicación Móvil





Herramienta pronostica para la COVID-19 habilitada con aprendizaje automático apoya la toma de decisiones clínicas para el alta en los departamentos de urgencias

Por el equipo editorial de HospiMedica en español
Actualizado el 31 Jan 2022
Print article
Ilustración
Ilustración
Los investigadores que evaluaron el desempeño en tiempo real de una herramienta de pronóstico para la COVID-19 habilitada con aprendizaje automático (ML), descubrieron que apoyaba la toma de decisiones clínicas para el alta del departamento de emergencias en los hospitales.

Un equipo multidisciplinario de intensivistas, médicos hospitalarios, médicos de urgencias e informáticos, de la Facultad de Medicina de la Universidad de Minnesota (Minneapolis, MN, EUA), evaluó la herramienta que brindó apoyo en la toma de decisiones clínicas a los proveedores del departamento de emergencias para facilitar la toma de decisiones compartida con los pacientes con respecto al alta.

El equipo de investigación de la universidad desarrolló e implementó con éxito un modelo de predicción de COVID-19 que funcionó bien en función del género, la raza y el origen étnico, para tres resultados diferentes. El algoritmo de regresión logística creado para predecir la COVID-19 grave funcionó bien en las personas bajo investigación, aunque se desarrolló en una población positiva de COVID-19.

Se puede desarrollar, validar e implementar un modelo de regresión logística habilitado para ML como soporte de decisiones clínicas en múltiples hospitales mientras se mantiene un alto rendimiento en la validación en tiempo real y se mantiene equitativo. Los investigadores recomiendan que el efecto sobre los resultados de los pacientes y el uso de recursos se evalúe y se siga investigando con el modelo de ML.

“COVID-19 ha sobrecargado los sistemas de atención médica desde múltiples facetas diferentes y, encontrar formas de aliviar el estrés, es crucial”, dijo la Dra. Mónica Lupei, profesora asistente en la Facultad de Medicina de la U de M y directora médica del Centro Médico M Health Fairview de la Universidad de Minnesota -Margen Occidental. “Los sistemas de decisiones clínicas a través de modelos predictivos habilitados para ML pueden contribuir a la atención de los pacientes, reducir las variaciones indebidas en la toma de decisiones y optimizar la utilización de recursos, especialmente durante una pandemia”.

Enlace relacionado:
Facultad de Medicina de la Universidad de Minnesota

Miembro Oro
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Miembro Oro
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Mobile Patient Lift
Golvo 9000
New
Pressure Monitoring Mattress
Entrix NX

Print article

Canales

Cuidados Criticos

ver canal
Imagen: la tecnología permite a los médicos detectar cambios neurológicos de forma temprana e intervenir más rápidamente (foto cortesía de brain4care)

Nueva tecnología mide la presión intracraneal con mayor precisión y de manera no invasiva

La monitorización de la presión intracraneal (PIC), junto con factores como la oxigenación del tejido cerebral, el metabolismo y la actividad eléctrica, es crucial en los cuidados... Más

Técnicas Quirúrgicas

ver canal
Imagen: Una posible ubicación segura para un implante visual (en azul) mientras las venas (rosas) que cubren la corteza visual permanecen intactas (foto cortesía de Precision Clinical Medicine, DOI: 10.1093/pcmedi/pbaf003)

Herramienta de código abierto optimiza la colocación de implantes cerebrales visuales

Alrededor de 40 millones de personas en todo el mundo padecen ceguera, una cifra que se prevé que aumente en los próximos años. Una posible solución para restaurar la visión... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.