Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the HospiMedica website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Feather Safety Razor

Deascargar La Aplicación Móvil





Sistema de alerta temprana basado en la IA detecta las variantes del SARS-CoV-2 con potencial de alto riesgo

Por el equipo editorial de HospiMedica en español
Actualizado el 17 Jan 2022
Print article
Ilustración
Ilustración
Un sistema de alerta temprana (SAE) combina el modelado estructural de la proteína Spike con inteligencia artificial (IA) para detectar y monitorear variantes de SARS-CoV-2 de alto riesgo, identificando >90 % de las variantes designadas por la Organización Mundial de la Salud (OMS), en promedio dos meses antes de recibir oficialmente la designación.

BioNTech SE (Maguncia, Alemania) e InstaDeep Ltd. (Londres, Reino Unido), desarrollaron un método computacional nuevo que analiza los datos de secuenciación disponibles en todo el mundo y predice variantes de alto riesgo del SARS-CoV-2. El SAE, desarrollado en colaboración por BioNTech e InstaDeep, se basa en métricas de aptitud y escape inmunológico calculadas por IA. El nuevo método combina el modelado estructural de la proteína viral Spike y los algoritmos de IA para señalar rápidamente las posibles variantes de alto riesgo ingresadas en los repositorios de datos de secuencia del SARS-CoV-2 en menos de un día en función de las métricas que califican su aptitud (por ejemplo, ACE2 y la interacción de la proteína Spike variante) así como sus propiedades de escape inmunológico.

El SAE se basa en dos enfoques: (1) el modelado estructural de la interacción del dominio de unión al receptor de la proteína Spike viral (RBD) con el receptor de la célula huésped y la puntuación del impacto de la variante del virus para poder escapar de la respuesta inmune y (2), modelado predictivo basado en IA para extraer información de cientos de miles de variantes de virus registradas de repositorios de secuencias globales. El SAE calcula una puntuación de escape inmune y una puntuación previa de aptitud (potencial de transmisibilidad). Si bien la puntuación de escape inmunitario por sí sola ya era altamente predictiva del riesgo, la combinación de estas dos métricas en una puntuación de Pareto proporcionó la mejor evaluación del riesgo que representa una variante de virus determinada. Cuanto más alto sea el puntaje, mayor será el riesgo de que la variante afecte la salud global. El enfoque de SAE clasifica las variantes del SARS-CoV-2 según el escape inmunológico y el potencial de aptitud basándose únicamente en los datos existentes y, por lo tanto, no depende de un enfoque de “esperar y observar”.

Las empresas validaron estas predicciones utilizando datos experimentales generados internamente y datos disponibles públicamente. Durante el período de prueba, el sistema identificó >90 % de las variantes designadas por la OMS (variantes preocupantes, VOC; variantes de interés, VOI; variantes bajo seguimiento, VUM) en promedio con dos meses de anticipación. El SAE detectó las variantes alfa, beta, gamma, theta, eta y ómicron, designadas por la OMS en la misma semana en que se cargó su secuencia por primera vez. La variante ómicron se clasificó como variante de alto riesgo el mismo día que su secuencia estuvo disponible. La variante IHU observada en Francia también fue evaluada por el SAE, que destacó las propiedades de escape inmunitario que son relativamente similares a ómicron, pero con una aptitud significativamente menor, por lo que es menos preocupante dados los datos actuales. Los resultados del estudio subrayan que el SAE es capaz de evaluar nuevas variantes en minutos y monitorear el riesgo de linajes de variantes casi en tiempo real. También es totalmente escalable a medida que se dispone de nuevos datos de variantes.

“Con los métodos computacionales avanzados que hemos desarrollado en los últimos meses, podemos analizar la información de la secuencia de la proteína Spike y clasificar las nuevas variantes de acuerdo con su escape inmunitario previsto y la puntuación de unión a la ACE2”, dijo Ugur Sahin, MD, director ejecutivo y cofundador de BioNTech. “La detección temprana de posibles variantes de alto riesgo podría ser una herramienta eficaz para alertar a los investigadores, los desarrolladores de vacunas, las autoridades sanitarias y los encargados de formular políticas, lo que brinda más tiempo para responder a las nuevas variantes de interés”.

“Actualmente, cada semana se descubren más de 10.000 secuencias variantes novedosas y los expertos humanos simplemente no pueden hacer frente a datos complejos a esta escala. Hemos abordado este desafío implementando las poderosas capacidades de inteligencia artificial de la plataforma DeepChain de InstaDeep, combinadas con el conocimiento y la tecnología del SARS-CoV-2 de BioNTech. Por primera vez, las variantes de alto riesgo podrían detectarse inmediatamente, lo que podría ahorrar meses de un tiempo precioso. Estamos felices de hacer que nuestro trabajo de investigación esté disponible públicamente y, lo que es más importante, esperamos su impacto continuo en el mundo real”, agregó Karim Beguir, cofundador y director ejecutivo de InstaDeep.

Enlace relacionado:
BioNTech SE
InstaDeep Ltd.


Print article

Canales

Cuidados Criticos

ver canal
Imagen: La tecnología vMap localiza la fuente de arritmia utilizando solo datos de un ECG no invasivo de 12 derivaciones (Fotografía cortesía de UC San Diego)

Nueva tecnología de mapeo de arritmia podría aumentar tasas de éxito de la ablación

El estándar actual de atención para tratar las arritmias cardíacas (cualquier tipo de latido cardíaco irregular que sea demasiado rápido, demasiado lento o fuera de tiempo,... Más

Téc. Quirúrgica

ver canal
Imagen: Se ha encontrado que la cirugía robótica mejora el tiempo de recuperación del paciente (Fotografía cortesía de Pexels)

Se descubrió que la cirugía robótica es más segura y reduce tiempo de hospitalización

A diferencia de la cirugía abierta, donde un cirujano trabaja directamente en un paciente e involucra grandes incisiones en la piel y el músculo, la cirugía asistida por robot permite... Más

Cuidados de Pacientes

ver canal
Imagen: La futura tecnología de salud portátil podría medir los gases liberados de la piel (Fotografía cortesía de Pexels)

Tecnología de salud portátil podría medir los gases liberados de la piel para monitorear enfermedades metabólicas

La mayoría de las investigaciones sobre la medición de biomarcadores humanos, que son medidas de la salud del cuerpo, se basan en señales eléctricas para detectar las sustancias... Más

Negocios

ver canal
Imagen: GE Healthcare y Medtronic han anunciado una colaboración para satisfacer la creciente necesidad de atención ambulatoria (Fotografía cortesía de Pexels)

GE Healthcare y Medtronic colaboran para mejorar el acceso a productos para CCA y LC

Brindar una atención excelente dentro y fuera del hospital tradicional es la nueva norma para pacientes, médicos y pagadores que buscan más opciones sin comprometer los excelentes resultados.... Más
Copyright © 2000-2022 Globetech Media. All rights reserved.