Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Radcal IBA  Group

Deascargar La Aplicación Móvil




Un método basado en la IA reduce los falsos positivos en la mamografía

Por el equipo editorial de HospiMedica en español
Actualizado el 24 Oct 2018
Un equipo de investigadores de la Universidad de Pittsburgh (Pittsburgh, PA, EUA) ha desarrollado un método de inteligencia artificial (IA) basado en una red neuronal convolucional de aprendizaje profundo (CNN, por sus siglas en inglés) que podría identificar características de imágenes mamográficas matizadas específicas en las pacientes a quienes se le solicitó una segunda mamografía, pero que muestran resultados benignos (falsas positivas) y diferenciar dichas mamografías de aquellas identificadas como malignas o negativas.

Los investigadores realizaron un estudio para determinar si se podría aplicar un aprendizaje profundo para analizar un gran conjunto de mamografías con el fin de distinguir imágenes de mujeres con un diagnóstico maligno, imágenes de mujeres a quienes se les hizo una segunda mamografía y que luego se determinó que tenían lesiones benignas y las imágenes de mujeres que se determinó que estaban libres de cáncer de mama en el momento del examen.

Los investigadores utilizaron un total de 14.860 imágenes de 3.715 pacientes de dos conjuntos de datos de mamografía independientes, el conjunto de datos de mamografía digital de campo completo (FFDM - 1.303 pacientes) y el conjunto de datos digitales de mamografía (DDSM - 2.412 pacientes). Más...
Construyeron modelos de CNN y utilizaron métodos de entrenamiento de modelos mejorados para investigar seis escenarios de clasificación que ayudarían a diferenciar las imágenes de las mamografías benignas, las malignas y las que requieren un segundo examen. Al combinar los conjuntos de datos de FFDM y DDSM, el área bajo la curva (AUC) para diferenciar las imágenes benignas, las malignas y las benignas en un segundo examen varió de 0,76 a 0,91. Cuanto más alto es el AUC, mejor será el desempeño, con un máximo de 1, según Shandong Wu, PhD, profesor asistente de radiología, informática biomédica, bioingeniería, sistemas inteligentes y ciencias clínicas y de traducción, y director de Computación Inteligente para el Laboratorio de Imagenología Clínica en el Departamento de Radiología de la Universidad de Pittsburgh, Pennsylvania.

"Demostramos que hay características de imágenes únicas para las imágenes benignas en segunda instancia que el aprendizaje profundo puede identificar y potencialmente ayudar a los radiólogos a tomar mejores decisiones sobre si una paciente debe ser examinada nuevamente o es más probable que sea un resultado falso positivo", dijo Wu. "Basados en la capacidad constante de nuestro algoritmo para discriminar todas las categorías de imágenes de mamografía, nuestros hallazgos indican que efectivamente existen algunas características distintivas únicas de las imágenes en que se solicita un segundo examen innecesariamente. Nuestros modelos de IA pueden complementar a los radiólogos en la lectura de estas imágenes y, en última instancia, beneficiar a las pacientes ayudando a reducir las solicitudes innecesarias para un segundo examen".


Enlace relacionado:
Universidad de Pittsburgh



Miembro Oro
Analizador de gases en sangre POC
Stat Profile Prime Plus
Miembro Oro
12-Channel ECG
CM1200B
New
High-Precision QA Tool
DEXA Phantom
New
Dual Chamber Warming Cabinet
D-Series
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a HospiMedica.es y acceda a las noticias y eventos que afectan al mundo de la Medicina.
  • Edición gratuita de la versión digital de HospiMedica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista HospiMedica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de HospiMedica en Español digital
  • Boletín de HospiMedica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Cuidados Criticos

ver canal
Imagen: Dosificación de insulina de glucosa en comparación con las decisiones clínicas reales en pruebas internas (A - C) y externas (D - F) (Photo Courtesy of Desman, et al., NPJ Digital Medicine)

Modelo impulsado por IA ayuda a los médicos a gestionar la dosificación compleja de insulina

Después de una cirugía cardíaca, los pacientes corren el riesgo de experimentar niveles altos y bajos de glucosa en sangre, lo que puede provocar complicaciones graves. El manejo adecuado de estas fluctuaciones... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.